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Abstract: A new distribution called the log generalized Lindley-Weibull (LGLW) 

distribution for modeling lifetime data is proposed. This model further generalizes 

the Lindley distribution and allows for hazard rate functions that are monotonically 

decreasing, monotonically increasing and bathtub shaped.  A comprehensive 

investigation and account of the mathematical and statistical properties including 

moments, moment generating function, simulation issues and entropy are presented. 

Estimates of model parameters via the method of maximum likelihood are given. 

Real data examples are presented to illustrate the usefulness and applicability of 

this new distribution. 
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1. Introduction 

The continuous one parameter Lindley distribution was introduced by Lindley (1958). 

Lindley used the distribution named after him to illustrate a difference between fiducial 

distribution and posterior distribution. Lindley distribution with the probability density function 

(pdf) 

f(x; θ) =
𝜃2(1+𝑥)exp(−𝜃𝑥)

1+𝜃
, 𝑥 > 0, 𝜃 > 0,     (1) 

is a two-component mixture of an exponential distribution  with scale parameter θ and 

gamma distribution with shape parameter 2 and scale parameter θ. The mixing proportion is p =
θ/(θ + 1) . Sankaran (1970) derived the Poisson-Lindley distribution. In this case, Lindley 

distribution was chosen as the mixing distribution when the parameter of the Poisson distribution 

is considered random. The resulting Poisson-Lindley distribution provided a better fit to the 

empirical set of data considered than the negative binomial and Hermite distributions. Recently, 

Ghitany et al. (2008, 2011) studied various properties of Lindley distribution and the two-

parameter weighted Lindley distribution with applications to survival data. Bakouch et al. (2012) 

introduced an extension of the Lindley distribution that offers more flexibility in the modeling of 

lifetime data. Ghitany et al. (2013) presented results on the two-parameter generalization referred 

to as the power Lindley distribution. See Krishna and Kumar (2011) for additional results on 

reliability estimation of the Lindley distribution with progressive type II censored sample. 
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Because of having only one parameter, the Lindley distribution does not provide enough 

flexibility for analyzing different types of lifetime data. To increase the flexibility for modeling 

purposes it will be useful to consider further generalizations of this distribution. This paper offers 

a five-parameter family of distributions which generalizes the Lindley distribution.  

There are several ways of generalizing a continuous distributionG(x), and they include 

Kumaraswamy-G, beta-G, McDonald-G, and gamma-G to mention a few. Kumaraswamy (1980) 

distribution is given by  

Gk(x) = 1 − (1 − xψ)
ϕ
, 0 ≤ 𝑥 ≤ 1, 

for ψ > 0 and ϕ > 0. Replacing x by G(x) on the right hand side of the equation gives the 

Kumaraswamy-G family: 

GKG(𝑥) = 1 − (1 − 𝐺𝜓(𝑥))
𝜙
. 

The beta-G family of distributions (Lee et al., 2007, Famoye et al., 2005) among others is 

given by  

GBG(𝑥) =
1

𝐵(𝑎, 𝑏)
∫ 𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤,

𝐺(𝑥)

0

 

for a > 0 and b > 0. The McDonald-G family of distributions (Cordeiro et al., 2012) is given 

by 

GMcG(𝑥) =
1

𝐵(𝑎𝑐−1, 𝑏)
∫ 𝑤𝑎𝑐−1−1(1 − 𝑤)𝑏−1

𝐺𝑐(𝑥)

0

𝑑𝑤, 

for a, bandc > 0. The Gamma-G family of distributions (Zografos and Balakrishnan, 2009, 

Pinho et al., 2012) is 

GGG(𝑥) =
𝛾(−𝜃−1 log(�̅�(𝑥)) , 𝛼)

Γ(𝛼)
, 

for α, θ > 0,where�̅�(x) = 1 − G(x). 
We consider a further generalization of the generalized Lindley distribution via the T-X 

family of distributions proposed by Alzaatreh et al. (2013) to obtain the cumulative distribution 

function (cdf) of the log generalized Lindley-Weibull distribution. The generalization (Alzaatreh 

et al., 2013) is given by the following cdf: 

G(x) = ∫ 𝑘(𝑦)𝑑𝑦,
W(F(x))

0

 

 

where 0 < W(F(x)) < ∞ , is a nondecreasing function of x , k(. )  is taken to be the 

generalized Lindley distribution of Zakerzadeh and Dolati (2009) and F(x)is the Weibull cdf. 

The corresponding pdf g, is given by  

g(x) =
𝑓(𝑥)

�̅�(𝑥)
𝑘 (𝑊(𝐹(𝑥))), 

where W(F(x)) = − ln(1 − F(x)).  
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The main objective of this article is to construct and explore the properties of the five-

parameter log generalized Lindley-Weibull (LGLW) distribution. The beauty of this model is the 

fact that it not only generalizes the generalized Lindley distribution but also exhibits the desirable 

properties of increasing, decreasing, and bathtub shaped hazard function.  

The model provides a better fit to data in the sense that it leads to more accurate results and 

prediction, which should facilitate better public policy in a wide range of areas including but not 

limited to medicine and environmental health, genetics, reliability, survival analysis and time-to 

event data analysis. 

The outline of this paper is as follows: In section 2 some generalized Lindley distributions 

including the new LGLW distribution are introduced. This section also includes some properties 

such as the behavior of the hazard function, reverse hazard function and sub-models of the log 

generalized Lindley-Weibull distribution. Section 3 contains the moment generating function, 

moments, distribution of functions of log generalized Lindley-Weibull random variables and 

simulation. Measures of uncertainty are given in section 4.  Section 5 contains the estimation of 

parameters via the maximum likelihood estimation technique. Fisher information and asymptotic 

confidence intervals are also presented in section 5. We end with applications in section 6 and 

concluding remarks in section 7. 

 

Generalizations of the Lindley Distribution 

In this section, we present further generalizations of the Lindley distribution. First, we discuss 

some generalizations that are in the literature, or in preparation. 

 

2.1 Generalized Lindley Distribution 

Let V1 and V2 be two independent random variables distributed according to gamma(α, θ) 

and gamma(α + 1, θ), respectively. That is, V1~𝐺𝐴𝑀(𝛼, 𝜃) and V2~𝐺𝐴𝑀(𝛼 + 1, 𝜃). For β ≥ 0, 

consider the random variable X = V1 with probability 
𝜃

𝜃+𝛽
, and X = V2 with probability 

𝛽

𝜃+β
. It is 

easy to verify that the density function of X is given by 

fGL(𝑥; 𝛼, 𝜃, 𝛽) =
𝜃

𝜃+𝛽
𝑓𝑔𝛼

(𝑥; 𝛼, 𝜃) +
𝛽

𝜃+𝛽
𝑓𝑔𝛼+1

(𝑥; 𝛼 + 1, 𝜃)     (2) 

which may be written as 

fGL(𝑥; 𝛼, 𝜃, 𝛽) =
𝜃2(𝜃𝑥)𝛼−1(𝛼+𝛽𝑥)𝑒−𝜃𝑥

(𝜃+𝛽)Γ(𝛼+1)
 , 𝑥 > 0, 𝛽, 𝛼, 𝜃 > 0     (3) 

where fgα
(𝑥) is the gamma pdf with parameters α and θ, that is, 

fgα
(𝑥; 𝛼, 𝜃) =

𝜃𝛼𝑥𝛼−1𝑒−𝜃𝑥

Γ(𝛼)
,         (4) 

 

for x > 0, α, θ > 0. See Zakerzadeh and Dolati, (2009) for additional details. The distribution 

contains the Lindley distribution as particular case, where α = β = 1. When β = 0, equation (3) 

reduces to the density function of the gamma distribution with the parameters α and θ. The case 
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α = 1  and β = 0 , reduces to ordinary exponential distribution. In general, if 

Vi~𝐺𝐴𝑀(𝛼𝑖, 𝜃𝑖), 𝑖 = 1,2, …, and X = vi with probability pi, and ∑ 𝑝𝑖𝑖 = 1, then 

fX(𝑥) = ∑ 𝑝𝑖
𝜃𝑖

Γ(𝛼𝑖)
𝑥𝛼𝑖−1𝑒−𝜃𝑖𝑥𝐼(0,∞)(𝑥)𝑖     (5) 

 

Clearly, the generalized Lindley (GL) distribution is a special case of (5). 

 

2.2 Exponentiated Lindley Distribution 

A generalization of the Lindley distribution due to Nadarajah et al. (2011) is the two 

parameter Exponentiated Lindley distribution with cumulative distribution function (cdf) and 

probability density function (pdf) given by 

 

𝐹𝐺𝐿 (𝑥; 𝜃, 𝛼) = [1 −
1+𝜃+𝜃𝑥

1+𝜃
𝑒−𝜃𝑥]

𝛼
,     (6) 

and 

fGL(𝑥; 𝜃, 𝛼) =
𝜃2𝛼

1+𝜃
[1 −

1+𝜃+𝜃𝑥

1+𝜃
𝑒−𝜃𝑥]

α−1
(1 + 𝑥)𝑒−𝜃𝑥,  (7) 

for x > 0, α > 0, and θ > 0, respectively. 

 

2.3 Beta-Generalized Lindley Distribution 

A further generalization of the Lindley distribution, although not studied in this paper is the 

beta-generalized Lindley (BGL) distribution, (Oluyede and Yang, 2014). The four parameter 

beta-generalized Lindley (BGL) cdf is given by 

FBGL(𝑥; 𝛼, 𝜃, 𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1

𝐺(𝑥;𝜃,𝛼)

0
𝑑𝑡,  (8) 

where G(x; θ, α) = {1 −
1+𝜃+𝜃𝑥

1+𝜃
𝑒−𝜃𝑥}

𝛼
, for x ≥ 0 , α > 0, θ > 0, a > 0, b > 0 . The 

corresponding pdf is given by 

 

fBGL(𝑥; 𝛼, 𝜃, 𝑎, 𝑏) =
𝛼𝜃2(1 + 𝑥)𝑒−𝜃𝑥

𝐵(𝑎, 𝑏)(1 + 𝜃)
{1 −

1 + 𝜃 + 𝜃𝑥

1 + 𝜃
𝑒−𝜃𝑥}

𝑎𝛼−1

 

× {1 − {1 −
1+𝜃+𝜃𝑥

1+𝜃
𝑒−𝜃𝑥}

𝛼
}
𝑏−1

       (9) 

 

for x ≥ 0, α > 0, θ > 0, a > 0, b > 0 . If α = 1 , we obtained the beta-Lindley (BL) 

distribution. If a = b = α = 1, we obtain the Lindley distribution. See Yang and Oluyede (2014) 

for additional details on the Exponentiated Kumaraswamy Lindley distribution. 

 

2.4 The Log Generalized Lindley-Weibull Distribution 



 
 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang                                     285 

 

In this section, we introduce a new generalization of the Lindley distribution via the Weibull 

model and study its mathematical and statistical properties. 

 

2.4.1 Generalization-The Model 

Based on a continuous baseline cdf F(x) and survival function �̅�(𝑥) = 1 − 𝐹(𝑥), with pdf 

f(x), Zografos and Balakrishnan (2009) defined the cdf 

𝐺𝑍𝐵(𝑥) =
1

Γ(𝛿)
∫ 𝑡𝛿−1𝑒−𝑡−log(1−𝐹(𝑥))

0
𝑑𝑡, 𝛿 > 0𝑎𝑛𝑑𝑥 ∈ 𝑹.  (10) 

Along the same lines, Ristić and Balakrishnan (2011) proposed an alternative gamma-

generator given by the cdf and pdf 

𝐺𝑅𝐵(𝑥) = 1 −
1

Γ(𝛿)
∫ 𝑡𝛿−1𝑒−𝑡− log(𝐹(𝑥))

0
𝑑𝑡, 𝛿 > 0𝑎𝑛𝑑𝑥 ∈ 𝑹, (11) 

and 

𝑔𝑅𝐵(𝑥) =
1

Γ(𝛿)
[− log(𝐹(𝑥))]

𝛿−1
𝑓(𝑥), 𝛿 > 0𝑎𝑛𝑑𝑥 ∈ 𝑹.  (12) 

Now, we consider a generalizations of the generalized Lindley distribution given by 

Zakerzadeh and Dolati (2009) via the Weibull distribution. The generalization is given by the 

following cdf (Alzaatreh et al., 2013): 

𝐺𝐿𝐺𝐿𝑊(𝑥) = ∫ 𝑓𝐺𝐿(𝑦)
−log(1−𝐹𝑊(𝑥))

0
𝑑𝑦,    (13) 

where gGL(𝑥) is the generalized Lindley pdf and FW(𝑥) is the Weibull cdf. The pdf of the 

log generalized Lindley-Weibull (LGLW) distribution is given by 

𝑔𝐿𝐺𝐿𝑊(𝑥; 𝛼, 𝛽, 𝜃, 𝛾, 𝑐) =
𝑓𝑊(𝑥;𝛾,𝑐)

�̅�𝑊(𝑥;𝛾,𝑐)
𝑓𝐺𝐿(− ln(1 − 𝐹𝑊(𝑥; 𝛾, 𝑐)) ; 𝛼, 𝛽, 𝜃),(14) 

where the survival function �̅�𝑊(𝑥; 𝛾, 𝑐) = 1 − 𝐹𝑊(𝑥; 𝛾, 𝑐) = 𝑒
−(

𝑥

𝛾
)
𝑐

, for x > 0, γ > 0, and 

c > 0. The well-known hazard function of the Weibull distribution is given by hW(𝑥; 𝛾, 𝑐) =
𝑓𝑊(𝑥;𝛾,𝑐)

𝐹𝑊(𝑥;𝛾,𝑐)
=

𝑐

𝛾
(
𝑥

𝛾
)
𝑐−1

. It follows therefore that the five-parameter LGLW cdf is given by 

𝐺𝐿𝐺𝐿𝑊(𝑥) = ∫
𝜃2(𝜃𝑦)𝛼−1(𝛼 + 𝛽𝑦)𝑒−𝜃𝑦

(𝛽 + 𝜃)Γ(𝛼 + 1)
𝑑𝑦

(
𝑥
𝛾
)
𝑐

0

 

=
1

(β + θ)Γ(α)
{𝜃[Γ(𝛼) − Γ(𝛼, 𝑢)] +

𝛽

𝛼
[Γ(𝛼) − Γ(𝛼 + 1, 𝑢)]}, 

where Γ(s, x) = ∫ 𝑡𝑠−1𝑒−𝑡∞

𝑥
𝑑𝑡  is the upper incomplete gamma function and u = θ(

x

γ
)
𝑐
. 

The corresponding pdf is given by 

𝑔𝐿𝐺𝐿𝑊(𝑥; 𝛼, 𝜃, 𝛽, 𝛾, 𝑐) =
𝑐𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)
(
𝑥

𝛾
)
𝑐𝛼−1

{𝛼 + 𝛽 (
𝑥

𝛾
)
𝑐

} 𝑒
−𝜃(

𝑥
𝛾
)
𝑐

, 

for x > 0, and θ, α, c, γ, β > 0. The graphs of the LGLW pdf, gLGLW are given in Figure 1 for 

selected values of the parameters α, θ, β, γ, and c. Note that the parameters β, γ, and θ are scale 

parameters, and α, c  are shape parameters. The graphs show that the pdf of the LGLW 

distribution can be right skewed or decreasing for the selected values of the model parameters. 
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2.4.2 Some LGLW Sub-models 

In this subsection, we present some sub-models of the LGLW distribution for selected values 

of the parameters c, α, γ, βand θ. 

If c = γ = 1 , then gLGLW(𝑥; 𝛼, 𝜃, 𝛽) =
𝜃𝛼+1𝑥𝛼−1(𝛼+𝛽𝑥)𝑒−𝜃𝑥

(𝛽+𝜃)Γ(𝛼+1)
. This is the generalized 

Lindley distribution, denoted by GENLIN(α, θ,\beta). 

If c = α = γ = β = 1 , then gLGLW(𝑥; 𝜃) =
𝜃2

1+𝜃
(1 + 𝑥)𝑒−𝜃𝑥 , which is the Lindley 

distribution and is denoted by LIN(θ) for x, θ > 0. 

If c = 1 and λ =
θ

γ
, then gLGLW(𝑥) =

𝛾(𝜆𝑥)𝛼

(𝛽+𝜆𝛾)Γ(𝛼+1)
(

𝜆

𝑥
) {𝛼 + 𝛽 (

𝑥

𝛾
)} 𝑒−𝜆𝑥. 

If c = α = β = 1, then gLGLW(x) =
𝜃2

𝛾(1+𝜃)
(1 +

𝑥

𝛾
) 𝑒

−𝜃(
𝑥

𝛾
)
. 

If α = β = 1, then gLGLW(𝑥) =
𝑐𝜃2

𝛾(1+𝜃)
(
𝑥

𝛾
)
𝑐−1

{1 + (
𝑥

𝛾
)
𝑐

} 𝑒
−𝜃(

𝑥

𝛾
)
𝑐

. 

If γ = β = 1, then gLGLW(𝑥) =
𝑐𝜃𝛼+1

(1+𝜃)Γ(𝛼+1)
𝑥𝑐𝛼−1(𝛼 + 𝑥𝑐)𝑒−𝜃𝑥𝑐

. 

If c = 1, then gLGLW(𝑥) =
𝜃𝛼+1

𝛾(𝛽+𝜃)Γ(𝛼+1)
(
𝑥

𝛾
)
𝛼−1

{𝛼 + 𝛽 (
𝑥

𝛾
)} 𝑒

−𝜃(
𝑥

𝛾
)
. 

If c = α = 1, then gLGLW(𝑥) =
𝜃2

𝛾(𝛽+𝜃)
{1 + 𝛽 (

𝑥

𝛾
)} 𝑒

−𝜃(
𝑥

𝛾
)
. 

If α = 1, then gLGLW(𝑥) =
𝑐𝜃2

𝛾(𝛽+𝜃)
(
𝑥

𝛾
)
𝑐−1

{1 + 𝛽 (
𝑥

𝛾
)
𝑐

} 𝑒
−𝜃(

𝑥

𝛾
)
𝑐

. 

 

2.4.3 Shape 

For the LGLW pdf, the first derivative of log(gLGLW(x)) is 

𝑑

𝑑𝑥
ln(𝑔𝐿𝐺𝐿𝑊(𝑥)) = −

𝑐𝜃 {(
𝑥
𝛾)

𝑐

}
2

𝛽 + {−𝑐(𝛽 − 𝜃)𝛼 − 𝛽(−1 + 𝑐)} (
𝑥
𝛾)

𝑐

− 𝑐𝛼2 + 𝛼

𝑥 {𝛼 + 𝛽 (
𝑥
𝛾)

𝑐

}
. 

Therefore, gLGLW(x) has a unique model at x0 , where x0  is the solution of the equation 
𝑑

𝑑𝑥
ln{𝑔𝐿𝐺𝐿𝑊(𝑥)} = 0. That is, 

−
𝑐𝜃 {(

𝑥
𝛾)

𝑐

}
2

𝛽 + {−𝑐(𝛽 − 𝜃)𝛼 − 𝛽(−1 + 𝑐)} (
𝑥
𝛾)

𝑐

− 𝑐𝛼2 + 𝛼

𝑥 {𝛼 + 𝛽 (
𝑥
𝛾)

𝑐

}
= 0, 

which implies that 
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cθ {(
𝑥

𝛾
)

𝑐

}
2

𝛽 + {−𝑐(𝛽 − 𝜃)𝛼 − 𝛽(−1 + 𝑐)} (
𝑥

𝛾
)

𝑐

− 𝑐𝛼2 + 𝛼 = 0. 

Solving for 𝑥 in the above equation gives the mode. That is, 

𝑥0 = [
{𝑐(𝛽−𝜃)𝛼+𝛽(−1+𝑐)}

2𝑐𝜃𝛽
+

√{−𝑐(𝛽−𝜃)𝛼−𝛽(−1+𝑐)}2−4(𝛽𝑐𝜃)(−𝑐𝛼2+𝛼)

2𝑐𝜃𝛽
]

1

𝑐

𝛾.(15) 

Note that ∂ ln(𝑔𝐿𝐺𝐿𝑊(𝑥)/𝜕𝑥) < 0 ⇔ 𝑥 > 𝑥0 and ∂ ln (
𝑔𝐿𝐺𝐿𝑊(𝑥)

𝜕𝑥
) > 0 ⇔ 𝑥 < 𝑥0, where 𝑥0 

is given by equation (15) above. When α = β = γ = c = 1, 

𝑥0 =
(1−𝜃)+√(𝜃−1)2

2𝜃
=

(1−𝜃)+√(𝜃+1)2−4𝜃

2𝜃
,    (16) 

which is the same result for the generalized Lindley distribution given by Zakerzadeh and 

Dolati (2009). 

 

2.4.4 Hazard and Reverse Hazard Functions 

In this section, we present the hazard and reverse hazard functions of the LGLW distribution. 

Graphs of the hazard function for selected values of the model parameters are given in Figure 2 

and 3. The hazard and reverse hazard functions of the LGLW distribution are given by 

ℎ(𝑥) =
𝑔𝐿𝐺𝐿𝑊(𝑥)

�̅�𝐿𝐺𝐿𝑊(𝑥)
=

𝑐𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)
(
𝑥
𝛾
)
𝑐𝛼−1

{𝛼 + 𝛽 (
𝑥
𝛾
)
𝑐
} 𝑒

−𝜃(
𝑥
𝛾
)
𝑐

1 −
1

(𝛽 + 𝜃)Γ(𝛼)
{𝜃[Γ(𝛼) − Γ(𝛼, 𝑢)] +

𝛽
𝛼

[Γ(𝛼) − Γ(𝛼 + 1, 𝑢)]}
, 

and 

τLGLW(𝑥) =
𝑔𝐿𝐺𝐿𝑊(𝑥)

𝐺𝐿𝐺𝐿𝑊(𝑥)
=

𝑐𝜃𝛼+1 (
𝑥
𝛾)

𝑐𝛼−1
{𝛼 + 𝛽 (

𝑥
𝛾)

𝑐
} 𝑒

−𝜃(
𝑥
𝛾
)
𝑐

𝛾𝛼 {𝜃[Γ(𝛼) − Γ(𝛼, 𝑢)] +
𝛽
𝛼

[Γ(𝛼) − Γ(𝛼 + 1, 𝑢)]}
 

for θ, α, c, γ, β > 0 , and u = θ (
𝑥

𝛾
)
𝑐

, respectively. We obtain ηLGLW(𝑥) =
−𝑔𝐿𝐺𝐿𝑊

′ (𝑥)

𝑔𝐿𝐺𝐿𝑊(𝑥)
 and 

η𝐿𝐺𝐿𝑊
′ (𝑥) and apply Glaser’s Lemma (1980) to the LGLW pdf: 

gLGLW(𝑥) =
𝑐𝜃𝛼+1

𝛾(𝛽+𝜃)Γ(𝛼+1)
(
𝑥

𝛾
)
𝑐𝛼−1

{𝛼 + 𝛽 (
𝑥

𝛾
)
𝑐
} e

−𝜃(
𝑥

𝛾
)
𝑐

,  (17) 

for x > 0, c, θ, α, γ, β > 0. Note that 

g𝐿𝐺𝐿𝑊
′ (𝑥) =

𝑐𝜃𝛼+1 (
𝑥
𝛾)

𝑐𝛼−1
(𝑐𝛼 − 1) {𝛼 + 𝛽 (

𝑥
𝛾)

𝑐
} 𝑒

−𝜃(
𝑥
𝛾
)
𝑐

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)𝑥
 

+
𝑐2𝜃𝛼+1 (

𝑥
𝛾)

𝑐𝛼−1
𝛽 (

𝑥
𝛾)

𝑐
𝑒

−𝜃(
𝑥
𝛾
)
𝑐

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)𝑥
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−
𝑐2𝜃𝛼+1 (

𝑥
𝛾
)
𝑐𝛼−1

(𝑐𝛼 − 1) {𝛼 + 𝛽 (
𝑥
𝛾
)
𝑐
} 𝜃 (

𝑥
𝛾
)
𝑐
𝑒

−𝜃(
𝑥
𝛾
)
𝑐

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)𝑥
, 

and 

ηLGLW(𝑥) =
𝑐𝜃 {(

𝑥
𝛾)

𝑐
}
2

𝛽 + {−𝑐(𝛽 − 𝜃)𝛼 − 𝛽(−1 + 𝑐)} (
𝑥
𝛾)

𝑐
− 𝑐𝛼2 + 𝛼

𝑥 {𝛼 + 𝛽 (
𝑥
𝛾
)
𝑐
}

. 

When c = γ = 1, we have ηLGLW(𝑥) =
𝛼−𝛼2−𝛼𝛽𝑥+𝜃𝑥(𝛼+𝛽𝑥)

𝑥(𝛼+𝛽𝑥)
, which is the same result given 

by Zakerzadeh and Dolati (2009). Now, 

η𝐿𝐺𝐿𝑊
′ (𝑥) =

2𝑐2𝜃 {(
𝑥
𝛾)

𝑐
}
2

𝛽

𝑥2{𝛼 + 𝛽 (
𝑥
𝛾)

𝑐
}
+

{−𝑐(𝛽 − 𝜃)𝛼 − 𝛽(−1 + 𝑐)} (
𝑥
𝛾)

𝑐
𝑐

𝑥2{𝛼 + 𝛽 (
𝑥
𝛾)

𝑐
}

 

−
𝑐𝜃 {(

𝑥
𝛾
)
𝑐
}
2

𝛽 + {−𝑐(𝛽 − 𝜃)𝛼 − 𝛽(−1 + 𝑐)} (
𝑥
𝛾
)
𝑐
− 𝑐𝛼2 + 𝛼

𝑥2{𝛼 + 𝛽 (
𝑥
𝛾)

𝑐
}

 

−
{𝑐𝜃 {(

𝑥
𝛾)

𝑐
}
2

𝛽 + {−𝑐(𝛽 − 𝜃)𝛼 − 𝛽(−1 + 𝑐)} (
𝑥
𝛾)

𝑐
− 𝑐𝛼2 + 𝛼}𝛽 (

𝑥
𝛾)

𝑐
𝑐

𝑥2 {𝛼 + 𝛽 (
𝑥
𝛾
)
𝑐
}

. 

If c = γ = 1, then η𝐿𝐺𝐿𝑊
′ (𝑥) =

𝛼3+2𝛼2𝛽𝑥+𝛼𝛽2𝑥2−𝛼2−2𝛼𝛽𝑥

𝑥2(𝛼+𝛽𝑥)2
, which is the same result obtained 

by Zakerzadeh and Dolati (2009). The graphs of the hazard and reverse hazard functions are 

given below for different values of parameters α, θ, β, γ, and c. For the selected values of the 

parameters α, θ, β, γ, and c, the graphs of the hazard function are decreasing, increasing and 

bathtub shaped. 

 

Moments and Distribution of Functions of Random Variables 

This section deals with the moment generating function, moments and related functions of 

LGLW distribution. The mean, standard deviation, coefficients of variation, skewness and 

kurtosis can be readily computed. Distributions of functions of the LGLW random variables are 

also presented. 

 

3.1 Moments 

In this section, we obtain the moments of the LGLW distribution and its sub-models. The 

𝑘𝑡ℎ non-central moment for the LGLW distribution is 
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E(xk) = ∫
𝛾𝑘𝑐𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)
(
𝑥

𝛾
)
𝑐𝛼+𝑘−1

{𝛼 + 𝛽 (
𝑥

𝛾
)
𝑐

} 𝑒
−𝜃(

𝑥
𝛾
)
𝑐∞

0

𝑑𝑥. 

Let 𝑦 = (
𝑥

𝛾
)
𝑐
, then 𝑥 = 𝛾𝑦

1

𝑐, and 
dx

dy
=

1

𝑐
𝛾𝑦

1

𝑐
−1

. Now, 

E(Xk) =
𝛾𝑘𝑐𝜃𝛼+1

(𝛽 + 𝜃)Γ(𝛼 + 1)
{𝛼 ∫ 𝑦𝛼+

𝑘
𝑐
−1𝑒−𝜃𝑦

∞

0

𝑑𝑦 + 𝛽 ∫ 𝑦𝛼+
𝑘
𝑐
+1−1𝑒−𝜃𝑦

∞

0

𝑑𝑦}. 

Let u = θy, then 
du

dy
= θ and dy =

du

θ
, so that 

E(Xk) =
𝛾𝑘𝜃𝛼+1

(𝛽 + 𝜃)Γ(𝛼 + 1)
 

× {𝛼 ∫ (
𝑢

𝜃
)
𝛼+

𝑘
𝑐
−1

𝑒−𝑢
∞

0

𝑑𝑢

𝜃
+ 𝛽 ∫ (

𝑢

𝜃
)
𝛼+

𝑘
𝑐
+1−1 𝑑𝑢

𝜃

∞

0

} 

=
𝛾𝑘𝜃

1−
𝑘
𝑐Γ(𝛼+

𝑘

𝑐
)

(𝛽+𝜃)Γ(𝛼+1)
[𝛼 + 𝛽𝜃−1 (𝛼 +

𝑘

𝑐
)].      (18) 

The mean of LGLW distribution is 

E(X) =
𝛾𝜃1−

1
𝑐

(𝛽 + 𝜃)Γ(𝛼 + 1)
Γ (𝛼 +

1

𝑐
) {𝛼 + 𝛽𝜃−1 (𝛼 +

1

𝑐
)}. 

If c = 1, then E(X) =
γ

𝛽+𝜃
{𝛼 + 𝛽𝜃−1(𝛼 + 1)}. 

 

3.2 Moment Generating Function 

Let X denote a random variable with pdf gLGLW(𝑥). The moment generating function (MGF) 

of X, M(t) = E(exp(tX)), is given by 

MX(t) = ∑
𝑡𝑗𝜃1−

𝑗
𝑐𝛾𝑗

𝑗! (𝛽 + 𝜃)Γ(𝛼 + 1)
{𝛼Γ (𝛼 +

𝑗

𝑐
) + 𝛽𝜃−1Γ(𝛼 +

𝑗

𝑐
+ 1)} .

∞

𝑗=0

 

Note that MX(𝑡) = ∑
𝑡𝑗

𝑗!
𝐸(𝑋𝑗)∞

𝑗=0 , where E(Xj) is given by equation (18). 

 

3.3 Distribution of Functions of Random Variables 

In this section, distributions of functions of random variables are presented. Recall the LGLW 

pdf is 

gLGLW(𝑥) =
𝑐𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)
(
𝑥

𝛾
)
𝑐𝛼−1

{𝛼 + 𝛽 (
𝑥

𝛾
)
𝑐

} 𝑒
−𝜃(

𝑥
𝛾
)
𝑐

, 

for x > 0, α, β, θ, γ, c > 0. 

Pdf of Y = (
𝑋

γ
)
c

: Let y = (
x

γ
)
𝑐

, then x = γy
1

𝑐 and 
dx

dy
=

1

𝑐
𝛾𝑦

1

𝑐
−1

. The pdf of Y = (
X

γ
)
c

 is 

given by 
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fY(𝑦) =
𝜃𝛼+1

(𝛽 + 𝜃)Γ(𝛼 + 1)
𝑦𝛼−1(𝛼 + 𝛽𝑦)𝑒−𝜃𝑦, 

for y > 0, α, β, θ > 0, which is the GENLIN(α, θ, β). 

Pdf of W = Xc: Let w = xc, then x = w
1

𝑐 and 
dx

dw
=

1

𝑐
𝑤

1

𝑐
−1

. The pdf of W = Xc is given 

by 

fW(𝑤) =
𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)

𝑤𝛼−1

𝛾𝑐𝛼−1
{𝛼 + 𝛽 (

𝑤

𝛾𝑐
)} 𝑒

−𝜃(
𝑤
𝛾𝑐), 

for w > 0, α, θ, β, γ, c > 0. If γ = 1, the two pdf’s above are the same. 

Pdf of V = θ(
X

γ
)
c

: Let v= θ(
x

γ
)
c

, then x = γ (
v

θ
)

1

𝑐
, and 

dx

dv
=

𝛾

𝑐
(

𝑣

𝜃
)

1

𝑐
−1 1

𝜃
. The pdf of V =

θ(
X

γ
)
c

 is given by 

fV(𝑣) =
𝜃𝛼

(𝛽 + 𝜃)Γ(𝛼 + 1)
(
𝑣

𝜃
)
𝛼−1

{𝛼 + 𝛽 (
𝑣

𝜃
)} 𝑒−𝑣, 

for v > 0, α, θ, γ, β > 0. 
 

3.4 Simulation 

The density of generalized Lindley (GL) distribution can be written in terms of the gamma 

density function as 

f(x; α, θ, β) =
θ

𝛽+𝜃
𝑓𝑔(𝑥; 𝛼, 𝜃) +

𝛽

𝛽+𝜃
𝑓𝑔(𝑥; 𝛼 + 1, 𝜃).    (19) 

To generate a random data Xi, i = 1,… , n, from GL(α, θ, β), Zakerzadeh and Dolati (2009), 

provided the following algorithm; 

1. Generate Ui, 𝑖 = 1, … , 𝑛, from U(0,1) distribution. 

2. Generate V1𝑖 , 𝑖 = 1,… , 𝑛, from the gamma(α, θ). 

3. Generate V2𝑖 , 𝑖 = 1, … , 𝑛, from the gamma(α + 1, θ). 

4. If Ui ≤
𝜃

𝛽+𝜃
, then set Xi = 𝑉1𝑖; otherwise set Xi = 𝑉2𝑖, 𝑖 = 1,… , 𝑛. 

Now given γ  and c , we can generate random data Yi, 𝑖 = 1,… , 𝑛  where Yi =

𝛾𝑋
𝑖

1

𝑐~𝐿𝐺𝐿𝑊(𝛼, 𝛽, 𝜃, 𝛾, 𝑐). 

 

2. Uncertainty Measures 

The concept of entropy plays a vital role in information theory. The entropy of a random 

variable is defined in terms of its probability distribution and can be shown to be a good measure 

of randomness or uncertainty. In this section, we present Renyi entropy, generalized entropy and 

s-entropy for the LGLW distribution. 
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4.1 Generalized Entropy 

Generalized entropy (GE) is widely used to measure inequality trends and differences. It is 

primarily used in income distributions. Kleiber and Kotz (2003) derived Theil index for GB2 

distribution and Singh-Maddala model. The generalized entropy (GE) I(α∗) is defined as: 

I(α∗) =
𝑣𝛼∗𝜇−𝛼∗

−1

𝛼∗(𝛼∗−1)
, 𝛼∗ ≠ 0,1,       (20) 

where 

ν𝛼∗ = 𝐸(𝑋𝛼∗
) = ∫ 𝑥𝛼∗

𝑔𝐿𝐺𝐿𝑊(𝑥)𝑑𝑥
∞

0

 

=
𝛾𝛼∗

𝜃1−
𝛼∗

𝑐

(𝛽 + 𝜃)Γ(𝛼 + 1)
Γ (𝛼 +

𝛼∗

𝑐
) {𝛼 + 𝛽𝜃−1 (𝛼 +

𝛼∗

𝑐
)}, 

and 

μ =
𝛾𝜃1−

1
𝑐

(𝛽 + 𝜃)Γ(𝛼 + 1)
Γ (𝛼 +

1

𝑐
) {𝛼 + 𝛽𝜃−1 (𝛼 +

1

𝑐
)}. 

The bottom-sensitive index is I(−1) , and the top-sensitive index is I(2) . The mean 

logarithmic deviation (MLD) index is given by: 

I(0) = lim
𝛼∗→0

𝐼(𝛼∗) = log(𝜇) − 𝜈0,     (21) 

where  

ν0 = ∫ log(𝑥)𝑑𝐺𝐿𝐺𝐿𝑊(𝑥) = ∫ (log(𝑥))𝑔𝐿𝐺𝐿𝑊(𝑥)
∞

0

𝑑𝑥
∞

0

 

= ∫
𝑐𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)

∞

0

(log(𝑥)) (
𝑥

𝛾
)
𝑐𝛼−1

{𝛼 + 𝛽 (
𝑥

𝛾
)
𝑐

} 𝑒
−𝜃(

𝑥
𝛾
)
𝑐

𝑑𝑥. 

Let y = θ(
𝑥

𝛾
)
𝑐
, then log(𝑥) = log(𝛾) −

1

𝑐
log(𝜃) +

1

𝑐
log(𝑦). Now, we have 

ν0 =
𝜃

(𝛽 + 𝜃)Γ(𝛼 + 1)
∫ {log(𝛾) +

1

𝑐
log(𝑦) −

1

𝑐
log(𝜃)} 𝑦𝛼−

1
𝑐{𝛼 + 𝛽𝜃−1𝑦}𝑒−𝑦

∞

0

𝑑𝑦 

=
θ

(𝛽 + 𝜃)Γ(𝛼 + 1)
[{log(

𝛾

𝜃
1
𝑐

)𝛼Γ (𝛼 −
1

𝑐
+ 1) +

𝛼

𝑐
Γ′ (𝛼 −

1

𝑐
+ 1)}

+ {log(
𝛾

𝜃
1
𝑐

)𝛽𝜃−1Γ (𝛼 −
1

𝑐
+ 2) +

𝛽𝜃−1

𝑐
Γ′ (𝛼 −

1

𝑐
+ 2)}]. 

Therefore, the MLD index reduces to 

I(0) = log(𝛾) + (1 −
1

𝑐
) log(𝜃) − log(𝛽 + 𝜃) − log(Γ(𝛼 + 1)) 

+ log(Γ (𝛼 +
1

𝑐
)) + log {𝛼 + 𝛽𝜃−1 (𝛼 +

1

𝑐
)} 
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−
𝜃

(𝛽+𝜃)Γ(𝛼+1)
[{log (

𝛾

𝜃
1
𝑐

) 𝛼Γ (𝛼 −
1

𝑐
+ 1) +

𝛼

𝑐
Γ

′(𝛼−
1

𝑐
+1)

} − {log (
𝛾

𝜃
1
𝑐

)𝛽𝜃−1Γ(𝛼 −
1

𝑐
+ 2) +

𝛽𝜃−1

𝑐
Γ

′(𝛼−
1

𝑐
+2)

}],                  (22) 

and Theil index is: 

I(1) = lim
𝛼∗→1

𝐼(𝛼∗) =
𝜇

𝜈1
− log(𝜇) 

=
𝜃

𝛼∗ − 1
𝑐 Γ (𝛼 +

1
𝑐) {𝛼 + 𝛽𝜃−1 (𝛼 +

1
𝑐)}

Γ (𝛼 +
𝛼∗

𝑐
) {𝛼 + 𝛽𝜃−1 (𝛼 +

𝛼∗

𝑐
)}

− log(𝛾) 

+(1 −
1

𝑐
) log(𝜃) − log(𝛽 + 𝜃) − log(Γ(𝛼 + 1)) 

+ log (Γ (𝛼 +
1

𝑐
)) + log {𝛼 + 𝛽𝜃−1 (𝛼 +

1

𝑐
)} .                       

(23) 

The generalized entropy for the sub-models can be readily obtained as well. 

 

4.2 Renyi Entropy 

An entropy of a random variable X is a measure of variation of the uncertainty. A popular 

entropy measure is Rényi entropy (1961). If X has the pdf f(. ), then Rényi entropy is defined by 

IR(𝑏) =
1

1−𝑏
log(∫ 𝑔𝑏(𝑥)𝑑𝑥

∞

0
), where b > 0 and b ≠ 1. Suppose X has the LGLW pdf, then for 

any real number b > 0, and b ≠ 1, 

∫ 𝑔𝐿𝐺𝐿𝑊
𝑏 (𝑥)

∞

0

𝑑𝑥 = ∫

[
 
 
 

{
𝑐𝜃𝛼+1 {𝛼 + 𝛽 (

𝑥
𝛾)

𝑐

}

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)
}

𝑏

(
𝑥

𝛾
)
𝑏(𝑐𝛼−1)

𝑒
−𝜃𝑏(

𝑥
𝛾
)
𝑐

]
 
 
 

𝑑𝑥
∞

0

 

= ∑{
𝑐𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)
}

𝑏
𝑏!

𝑗! (𝑏 − 𝑗)!
𝛽𝑗𝛼𝑏−𝑗

∞

𝑗=0

∫ (
𝑥

𝛾
)
𝑏(𝑐𝛼−1)+𝑐𝑗

𝑒
−𝜃𝑏(

𝑥
𝛾
)
𝑐∞

0

𝑑𝑥. 

Let ν = θb (
𝑥

𝛾
)
𝑐

, and 
dx

dν
=

1

𝑐
(

𝜈

𝜃𝑏
)

1

𝑐
−1 𝛾

𝜃𝑏
. Now, making the substitution, we have 

∫ 𝑔𝐿𝐺𝐿𝑊
𝑏

∞

0

(𝑥)𝑑𝑥 = {
𝑐𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)
}

𝑏

∑
𝑏!

𝑗! (𝑏 − 𝑗)!
𝛽𝑗𝛼𝑏−𝑗

𝛾

𝑐


∞

𝑗=0

 

× (𝜃𝑏)−𝑏𝛼+
𝑏

𝑐
−𝑗−

1

𝑐Γ (𝑏𝛼 −
𝑏

𝑐
+ 𝑗 +

1

𝑐
).      (24) 

Now, for any real number b > 0, and b ≠ 1, Rényi entropy is given by 

IR(𝑏) =
𝑏

1 − 𝑏
log (

𝑐𝜃𝛼+1

𝛾(𝛽 + 𝜃)Γ(𝛼 + 1)
) 



 
 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang                                     293 

 

+
1

1 − 𝑏
log {∑

𝑏!

𝑗! (𝑏 − 𝑗)!
(
𝛽

𝛼
)

𝑗∞

𝑗=0

𝛼𝑏
𝛾

𝑐
(𝜃𝑏)−𝑏𝛼+

𝑏
𝑐
−𝑗−

1
𝑐Γ (𝑏𝛼 −

𝑏

𝑐
+ 𝑗 +

1

𝑐
)} , 

for α, β, γ, c > 0. By taking the limit as b ↑ 1 and using L’Hospital’s rule, we obtain Shannon 

entropy (1948). Rényi entropy for the sub-models can be readily obtained. 

 

4.3 s-Entropy 

The s-entropy is a one parameter generalization of the Shannon entropy and is defined by 

Hs(𝑔𝐿𝐺𝐿𝑊) =
1

𝑠−1
[1 − ∫ 𝑔𝐿𝐺𝐿𝑊

𝑠 (𝑥)
∞

0
𝑑𝑥], 𝑠 > 0, 𝑎𝑛𝑑𝑠 ≠ 1.   (25) 

Now, if s ∈ R+ and s ≠ 1, 

Hs(𝑔𝐿𝐺𝐿𝑊) =
1

𝑠−1
[
1 − ∑ {

𝑐𝜃𝛼+1

𝛾(𝛽+𝜃)Γ(𝛼+1)
}
𝑠

(
𝑠
𝑗) 𝛽𝑗𝛼𝑠−𝑗∞

𝑗=0

× ∫ (
𝑥

𝛾
)

𝑠(𝑐𝛼−1)+𝑐𝑗

𝑒
−𝜃𝑠(

𝑥

𝛾
)
𝑐

∞

0
𝑑𝑥

].   (26) 

The integral in equation (26) follow directly from the result of the integral in Rényi entropy 

with s in place of b. For s=1, Hs(𝑔𝐿𝐺𝐿𝑊) = −𝐸[log(𝑔𝐿𝐺𝐿𝑊(𝑋))], which is Shannon entropy 

(1948). 

 

Maximum Likelihood Estimation in the LGLW Distribution 

In this section, we obtain estimates of the parameters of the LGLW distribution. Methods of 

maximum likelihood (ML) estimation and asymptotic confidence intervals for the model 

parameters are presented. 

 

5.1 Maximum Likelihood Estimators 

Suppose x = (x1, x2, … , xn) is a random sample of size n from the LGLW distribution. The 

log-likelihood function is given by: 

𝑙(α, β, γ, c, θ) = n ln 𝑐 + 𝑛(𝛼 + 1) ln 𝜃 − 𝑛 ln 𝛾 − 𝑛 ln(𝛽 + 𝜃) 

−n ln Γ(𝛼 + 1) + 𝑛(−𝑐𝛼 + 1) ln 𝛾 + (𝑐𝛼 − 1)∑ln 𝑥𝑖

𝑛

𝑖=1

 

+∑ ln {𝛼 + 𝛽 (
𝑥𝑖

𝛾
)
𝑐

}𝑛
𝑖=1 − ∑ 𝜃 (

𝑥𝑖

𝛾
)
𝑐

𝑛
𝑖=1 .      (27) 

The partial derivatives of 𝑙 with respect to the parameters are: 

∂𝑙

𝜕𝛼
= 𝑛 ln 𝜃 −

𝑛Γ′(𝛼+1)

Γ(𝛼+1)
− 𝑛𝑐 ln 𝛾 + 𝑐 ∑ ln 𝑥𝑖 

𝑛
𝑖=1 + ∑

1

𝛼+𝛽(
𝑥𝑖
𝛾

)
𝑐

𝑛
𝑖=1 ,  (28) 
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∂𝑙

𝜕𝛽
= −

𝑛

𝛽+𝜃
+ ∑

(
𝑥𝑖
𝛾

)
𝑐

𝛼+𝛽(
𝑥𝑖
𝛾

)
𝑐

𝑛
𝑖=1 ,        (29) 

∂𝑙

𝜕𝛾
= −

𝑛

𝛾
+

𝑛(−𝑐𝛼+1)

𝛾
− ∑

𝛽(
𝑥𝑖
𝛾

)
𝑐
𝑐

𝛾{𝛼+𝛽(
𝑥𝑖
𝛾

)
𝑐
}

𝑛
𝑖=1 +

1

𝛾
∑ 𝜃 (

𝑥𝑖

𝛾
)
𝑐

𝑛
𝑖=1 ,     (30) 

∂𝑙

𝜕𝜃
=

𝑛(𝛼+1)

𝜃
−

𝑛

𝛽+𝜃
− ∑ (

𝑥𝑖

𝛾
)
𝑐

𝑛
𝑖=1 ,      (31) 

and 

∂𝑙

𝜕𝑐
=

𝑛

𝑐
− nα ln 𝛾 + ∑ 𝛼 ln 𝑥𝑖

n
i=1 + ∑

𝛽(
𝑥𝑖
𝛾

)
𝑐
ln{𝛽(

𝑥𝑖
𝛾

)}

{𝛼+𝛽(
𝑥𝑖
𝛾

)
𝑐
}

𝑛
𝑖=1 − ∑ 𝜃 (

𝑥𝑖

𝛾
)
𝑐

ln {𝜃 (
𝑥𝑖

𝛾
)}𝑛

𝑖=1 .      (32) 

The MLE of the parameters α, β, γ, θ and c, say �̂�, �̂�, 𝛾, 𝜃, and  �̂� are obtained by solving the 

equations 
∂𝑙

∂α
= 0,

𝜕𝑙

𝜕𝛽
= 0,

𝜕𝑙

𝜕𝛾
= 0,

𝜕𝑙

𝜕𝜃
= 0, and 

∂𝑙

∂c
= 0. There is no closed form solution, so these 

equations must be solved numerically to obtain the MLE of the parameters α, θ, β, γ and c, Note 

that, if α, β, γ and c are known, it follows from equation (29) that 

𝜃 =
𝑛

∑
(
𝑥𝑖
𝛾

)
𝑐

𝛼+𝛽(
𝑥𝑖
𝛾

)
𝑐

𝑛
𝑖=1

− 𝛽.         (33) 

When β, θ, γ, and c are known, it follows from equation (31) that 

�̂� = −
𝜃

𝛽+𝜃
+

𝜃

𝑛
∑ (

𝑥𝑖

𝛾
)
𝑐

𝑛
𝑖=1 − 1.       (34) 

When α, θ, γ, and c are known, it follows from equation (31) that 

�̂� =
−𝑛

𝑛(𝛼+1)

𝜃
−∑ (

𝑥𝑖
𝛾

)
𝑐

𝑛
𝑖=1

− 𝜃.        (35) 

 

5.2 Fisher Information 

Let 𝛉 = (θ1, θ2, θ3, θ4, θ5) = (α, β, θ, γ, c) , and g𝐿𝐺𝐿𝑊(𝑥; 𝜽)  the LGLW pdf. If 

log(𝑔𝐿𝐺𝐿𝑊(𝑥; 𝜽))  is twice differentiable with respect to 𝛉 , and under certain regularity 

conditions, Fisher information matrix (FIM) is the 5 × 5 matrix whose elements are: 

I(𝛉) = −Eθ [
𝜕2 log(𝑔𝐿𝐺𝐿𝑊(𝑋;𝜽))

𝜕𝜃𝑖𝜕𝜃𝑗
].       (36) 

The second and mixed partial derivatives of the log-likelihood function used to obtain the 

observed Fisher information matrix can be readily computed. 

 

5.3 Asymptotic Confidence Intervals 

The 5 × 5 observed information matrix 𝐉(𝛉) = −
∂2𝑙(𝜽)

𝜕𝜽𝜕𝜽𝑇 can be used for interval estimation 

of α, β, θ, γ, and c, and for test of hypothesis on these parameters. Under conditions that are 
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fulfilled for parameters in the interior of the parameter space but not on the boundary, the 

asymptotic distribution of  �̂� − 𝛉 can be approximated by N5 (0, 𝑱(�̂�)
−1

). Thus, the multivariate 

normal N5 (0, 𝑱(�̂�)
−1

) distribution can be used to construct approximate confidence intervals 

and confidence regions for the parameters. In fact, the asymptotic 100(1 − η)% confidence 

intervals for α, β, θ, γ  and c are given by  �̂� ± 𝑍𝜂

2
× √𝐼𝛼𝛼

−1(�̂�) , �̂� ± 𝑍𝜂

2
× √𝐼𝛽𝛽

−1(�̂�) , 𝜃 ± 𝑍𝜂

2
×

√𝐼𝜃𝜃
−1(�̂�), 𝛾 ± 𝑍𝜂

2
× √𝐼𝛾𝛾

−1(�̂�), and �̂� ± 𝑍𝜂

2
× √𝐼𝑐𝑐

−1(�̂�) , where Z𝜂

2
 is the (1 −

η

2
)
𝑡ℎ

 quantile of the 

standard normal distribution. 

The likelihood ratio (LR) statistic is useful for testing the goodness-of-fit of the LGLW model 

and for comparing it with other sub-models such as generalized Lindley (GL) and Lindley (L) 

distributions. We can easily check if the fit using LGLW model is statistically “superior” to a fit 

using the GL model for a given data set by computing w = 2{𝑙(�̂�, �̂�, 𝜃, 𝛾, �̂�) − 𝑙(�̃�, �̃�, �̃�, 1,1)}, 

where �̂�, �̂�, 𝜃, 𝛾, 𝑎𝑛𝑑�̂� are the unrestricted MLEs and �̃�, �̃�, 𝑎𝑛𝑑�̃� are the restricted estimates. 

Also, the LR statistic is asymptotically distributed under the null model as χ2
2. Further, the LR 

test rejects the null hypothesis if ω > ξη, where ξη denotes the upper 100η% point of the χ2
2 

distribution. 

 

Applications 

The maximum likelihood estimates (MLEs) of the parameters are obtained via the subroutine 

NLP in SAS. The maximum likelihood estimates (MLEs) of the parameters are obtained via the 

subroutine NLP in SAS. The estimates (standard error in parenthesis), -2 Log Likelihood, Akaike 

Information Criteria (AIC), Consistent Akaike Information Criterion (AICC), Bayesian 

Information Criterion (BIC), SS and KS values are given, where AIC = 2p − 2 ln 𝐿, AICC =

AIC + 2
p(p+1)

𝑛−𝑝−1
, BIC = p ln𝑛 − 2 ln 𝐿, and KS = max

1≤j≤n
{GLGLW(𝑥(𝑗)) −

𝑗−1

𝑛
,
𝑗

𝑛
− 𝐺𝐿𝐺𝐿𝑊(𝑥(𝑗))}, 

where L(𝜃) = L is the value of the likelihood function evaluated at the estimated parameters, n 

is the number of observations, and p is the number of estimated parameters are given in Tables 

1, 2 and 3. 

 

 Probability plots (Chambers et al., 1983) are also presented in Figure 4, Figure 5 and Figure 

6. For the probability plot, we plotted the estimated cdf  GLGLW(𝑥(𝑗); �̂�, �̂�, 𝜃, 𝛾, �̂�)   against 
𝑗−0.375

𝑛+0.25
, j = 1,2,… , n, where x(𝑗) are the ordered values of the observed data. We also computed 

a measure of closeness of each plot to the diagonal line. This measure of closeness is given by 

the sum of squares SS = ∑ [GLGLW(𝑥(𝑗); �̂�, �̂�, 𝜃, 𝛾, �̂�) − (
𝑗−0.375

𝑛+0.25
)]

2
𝑛
𝑗=1 . 

 This first data (Aarset, 1987) consists of the times to failure of 50 devices put on life test at 

time 0. The data are: 0.1  0.2  1.0  1.0  1.0  1.0  1.0  2.0  3.0  6.0  7.0  11.0 12.0 18.0 18.0 18.0 
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18.0 18.0 21.0 32.0 36.0 40.0 45.0 46.0 47.0 50.0 55.0 60.0 63.0 63.0 67.0 67.0 67.0 67.0 72.0 

75.0 79.0 82.0 82.0 83.0 84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0.  The results are given 

in Table 1, and plots are given in Figure 4. The estimated covariance matrix for the LGLW 

distribution is given by: 

(

 
 
 
 

0834.41139.21208.51273.20672.2

1139.21432.11581.21551.10950.1

1208.51581.21535.31567.21018.3

1273.21551.11567.21519.21071.1

0672.20950.11018.31071.1000170055.0











EEEEE

EEEEE

EEEEE

EEEEE

EEEE

)

 
 
 
 

 

 

The 95%  asymptotic confidence intervals are: α ∈ 0.087773 ± 1.96(0.013041), θ ∈

0.000000176 ± 1.96(0.00000005), β ∈ 0.000000161 ± 1.96(0.00000006), γ ∈
3.597705 ± 1.96(0.0000001), c ∈ 5.089304 ± 1.96(0.000208). 

The LR test statistics of the hypotheses H0:LGLW(α, θ, 1,1, c) vs Ha:LGLW(α, θ, β, γ, c), 

H0:LGLW(α, θ, β, γ, 1)  vs Ha:LGLW(α, θ, β, γ, c)  and H0:LGLW(1, θ, β, γ, c)  vs 

Ha:LGLW(α, θ, β, γ, c) are 43.2 (p-value <0.0001), 34.9 (p-value <0.0001) and 40.5 (p-value 

<0.0001). We conclude LGLW(α, θ, β, γ, c)  distribution is significantly better than the sub-

models. Also, LGLW(α, θ, β, γ, c) distribution gives the smallest AIC, AICC, BIC, SS and KS 

values. Consequently, we conclude that the LGLW(α, θ, β, γ, c) distribution is the “best” model 

for Aarset data. 

The second data set given by Murthy et al. (2004) consists of the failure times of 20 

mechanical components. The data are: 0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 

0.098 0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485. The results and plots are 

given in Table 2 and Figure 5. The estimated covariance matrix for the LGLW distribution is 

given by: 

(

 
 
 
 

0.006000.00018-0.098480.226540.81060

0.000180.00001-0.002940.006840.02441

-0.09848-0.002941.66015-3.6895913.41218-

0.226540.00684-3.689598.6485730.80945

0.810600.02441-13.4121830.80945110.73486

)

 
 
 
 

 

The LR test statistics of the hypotheses H0:LGLW(α, θ, β, γ, 1) vs Ha:LGLW(α, θ, β, γ, c) 

and H0:LGLW(1, θ, β, γ, c) vs Ha:LGLW(α, θ, β, γ, c) are 4.9 (p-value =0.027) and 11.8 (p-value 

<0.001). Therefore, we conclude that the LGLW(α, θ, β, γ, c) distribution is significantly better 

than the LGLW(α, θ, β, γ, 1)  and LGLW(1, θ, β, γ, c)  sub-models. Also, note that the 

LGLW(α, θ, β, γ, c) distribution gives the smallest SS, KS values and second smallest AIC, AICC, 

BIC values when compare to gamma distribution. We conclude that the LGLW(α, θ, β, γ, c) 

distribution is a reasonably good model for the failure times data. 
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The third example consists of prices (× 104 dollars) of 428 new vehicles for the 2004 year 

(Kiplinger's Personal Finance, Dec 2003). The data are given in Table 3.  

The results and plots are given in Table 4 and Figure 6. The estimated covariance matrix for 

the LGLW distribution is given by: 

(

 
 

0.035560103 −4.29E − 06 −4.69E − 06 −0.000031261 0.001043554
−4.29E − 06 7.66E − 10 5.69E − 10 5.50E − 09 −7.53E − 08
−4.69E − 06 5.69E − 10 6.20E − 10 4.15E − 09 −1.36E − 07

−0.000031261 5.50E − 09 4.15E − 09 3.98E − 08 −4.91E − 07
0.001043554 −7.53E − 08 −1.36E − 07 −4.91E − 07 0.000072061)

 
 

 

 

Plots of the fitted densities and the histogram, observed probability vs predicted probability, 

and empirical survival function are given in Figure 6. 

The LR test statistics of the hypotheses H0:LGLW(α, θ, β, γ, 1) vs Ha:LGLW(α, θ, β, γ, c) 

and H0:LGLW(1, θ, β, γ, c) vs Ha:LGLW(α, θ, β, γ, c) are 46.0 (p-value <0.0001) and 12.6 (p-

value =0.0004), respectively. We conclude that the LGLW(α, θ, β, γ, c)  distribution is 

significantly better than the sub-models. Also, gamma distribution gives the smallest AIC, AICC, 

BIC, SS, KS values followed by the LGLW(α, θ, β, γ, c) distribution. Consequently, the gamma 

and LGLW(α, θ, β, γ, c) distributions are good models for prices of 2004 new cars and trucks data. 

 

Concluding Remarks 

In line with results on generalized distributions and following the contents of the T-X class 

of distributions (Alzaatreh et al., 2013), we derive and present the mathematical and  statistical 

properties of a new generalized Lindley distribution called log generalized Lindley-Weibull 

(LGLW) distribution. This distribution contains several sub-models including Lindley 

distribution and the generalized Lindley distribution of Zakerzadeh and Dolati (2009). The hazard 

rate function of the LGLW distribution can be decreasing, decreasing or bathtub shaped. 

Moments and distributions of functions of random variables from the LGLW distribution are 

derived. Uncertainty measures including generalized entropy, Rényi and Shannon entropies are 

obtained. We discuss maximum likelihood estimation and hypotheses tests of the model 

parameters. The LGLW distribution permits testing the goodness-of-fit of Lindley and 

generalized Lindley distribution by taking these distributions as sub-models. Asymptotic 

confidence intervals for the parameters of the LGLW distribution are given. We fit the LGLW 

distribution and its sub-models to three real data sets to demonstrate the potential importance, 

practical relevance and applicability of this model in lifetime analysis and other areas. 
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Table 1: LGLW Estimates of Models for Aarset Data 

 

 

Table 2: LGLW Estimates of Models for Failure Times Data 

 Estimates Statistics 

α Θ β γ c -2 Log Likelihood AIC AICC BIC SS KS 

GLW(α, θ, β, γ, c) 0.0878 0.0000002 0.0000002 3.5977 5.0893 439.0 449.0 450.4 458.6 0.1055 0.1259 

(0.013041) (0.00000005) (0.00000006) (0.0000001) (0.0002)       

GLW(α, θ, 1,1, c) 0.3081 0.0475 1 1 0.8688 482.2 488.2 488.7 493.9 0.5024 0.1893 

(0.153033) (0.043501) - - (0.181765)       

GLW(α, θ, β, γ, 1) 0.5281 0.0119 0.0241 0.4525 1 473.9 481.9 482.8 489.6 0.4273 0.1790 

(0.094401) (0.001106) (0.010042) (0.000549) -       

GLW(1, θ, β, γ, c) 1 0.0258 0.0279 0.4307 0.8817 479.5 487.5 488.4 495.2 0.4813 0.1849 

- (0.020363) (0.017642) (0.002066) (0.150219)       

 λ 𝑘          

Weibull(λ, k) 44.9125 0.9490    482.0 486.0 486.3 489.8 0.5289 0.1928 

(6.902622) (0.167396)          

 α Β          

Gamma(α, β) 0.7991 0.0175    480.4 484.4 484.6 488.2 0.5545 0.2022 

(0.163869) (0.002753)          

 Estimates Statistics 

α Θ β γ c -2 Log Likelihood AIC AICC BIC SS KS 

GLW(α, θ, β, γ, c) 37.885305 12.73676 3.915639 0.005146 0.352967 -64.7 -54.7 -50.4 -49.7 0.2453 0.2165 

(10.5231) (2.9408) (1.2885) (0.0023) (0.0775)       

GLW(α, θ, β, γ, 1) 3.3948 0.000001956 4.8031 5.41E-08 1 -59.8 -51.8 -49.1 -47.8 0.2707 0.2251 

(1.62E-18) (3.64E-12) (1.28E-25) (1.32E-10) -       

GLW(1, θ, β, γ, c) 1 5.3422 1.66E-07 0.3817 1.6422 -52.8 -44.8 -42.2 -40.9 0.4142 0.2641 

- (0.0063) (1.109E-05) (0.1446) (0.3491)       

 λ k          

Weibull(λ, k) 0.1376 1.6422    -52.8 -48.8 -48.1 -46.9 0.4142 0.2641 

(0.0226) (0.329)          

 α Β          

Gamma(α, β) 4.2441 34.9163    -59.8 -55.8 -55.1 -53.8 0.2722 0.2253 

(2.7031) (27.7806)          
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Table 3: Prices of 2004 New Cars and Trucks Data 

1.028 1.0539 1.076 1.0995 1.1155 1.129 1.156 1.169 1.1839 1.1905 1.1939 1.2269 1.236 1.2585 1.274 

1.28 1.2884 1.2965 1.327 1.327 1.358 1.367 1.373 1.3839 1.4085 1.4165 1.417 1.43 1.4385 1.45 

1.461 1.4622 1.463 1.474 1.481 1.484 1.485 1.503 1.504 1.5295 1.5389 1.5389 1.546 1.5495 1.55 

1.5568 1.558 1.5825 1.585 1.604 1.635 1.6385 1.6495 1.6497 1.653 1.6695 1.6722 1.6999 1.7045 1.7163 

1.72 1.7232 1.7262 1.7475 1.7495 1.763 1.764 1.7735 1.775 1.7985 1.8345 1.8435 1.869 1.8715 1.8739 

1.876 1.882 1.8825 1.8892 1.8995 1.9005 1.909 1.911 1.9135 1.924 1.927 1.9312 1.9339 1.9479 1.949 

1.956 1.9635 1.9635 1.9825 1.986 1.986 1.9945 1.9999 2.013 2.014 2.0215 2.022 2.0255 2.029 2.03 

2.031 2.032 2.0339 2.037 2.0445 2.0449 2.051 2.0585 2.0615 2.0939 2.1055 2.1055 2.1087 2.141 2.1445 

2.1589 2.1595 2.1595 2.1795 2.1825 2.184 2.19 2.1965 2.2 2.201 2.2035 2.218 2.2225 2.226 2.229 

2.235 2.2388 2.2395 2.245 2.2515 2.257 2.2595 2.2735 2.2775 2.3215 2.329 2.3495 2.3495 2.356 2.3675 

2.3699 2.376 2.3785 2.382 2.3845 2.3895 2.3895 2.3955 2.413 2.4225 2.4295 2.4345 2.452 2.4589 2.4695 

2.478 2.4885 2.4895 2.495 2.4955 2.5 2.5045 2.5092 2.513 2.5135 2.5193 2.5215 2.5395 2.552 2.564 

2.5645 2.57 2.57 2.5717 2.592 2.5935 2.594 2.5955 2.5995 2.6 2.606 2.6135 2.6189 2.6395 2.647 

2.651 2.6545 2.656 2.665 2.686 2.691 2.693 2.696 2.699 2.6992 2.702 2.7145 2.72 2.7339 2.737 

2.745 2.749 2.749 2.756 2.771 2.7905 2.793 2.7995 2.8345 2.837 2.8495 2.8495 2.8739 2.875 2.879 

2.88 2.9282 2.9322 2.9345 2.938 2.944 2.9562 2.9595 2.967 2.9795 2.9865 2.9995 2.9995 3.0245 3.0295 

3.0315 3.0492 3.0795 3.0835 3.086 3.0895 3.092 3.095 3.1045 3.1145 3.123 3.137 3.1545 3.1545 3.1745 

3.184 3.1849 3.189 3.2235 3.2245 3.228 3.235 3.2415 3.2445 3.2455 3.2495 3.266 3.278 3.2845 3.3112 

3.318 3.3195 3.326 3.3295 3.336 3.343 3.348 3.35 3.354 3.378 3.384 3.3895 3.3995 3.3995 3.439 

3.448 3.4495 3.4495 3.456 3.4845 3.4895 3.5105 3.5145 3.5495 3.5515 3.5545 3.5695 3.5725 3.592 3.594 

3.594 3.5995 3.61 3.6395 3.664 3.6895 3.6945 3.6995 3.7 3.7245 3.739 3.753 3.756 3.763 3.773 

3.7885 3.7895 3.7995 3.838 3.883 3.9195 3.9235 3.925 3.9465 3.964 3.9995 4.0095 4.0235 4.032 4.034 

4.0565 4.059 4.067 4.072 4.084 4.0845 4.101 4.1045 4.125 4.1465 4.1475 4.1815 4.1995 4.249 4.2565 

4.2735 4.284 4.2845 4.2915 4.3175 4.3365 4.3495 4.3755 4.3895 4.424 4.4295 4.4535 4.4925 4.4995 4.521 

4.5445 4.57 4.5707 4.61 4.6265 4.647 4.6995 4.7955 4.804 4.817 4.8195 4.845 4.909 4.969 4.9995 

4.9995 5.047 5.0595 5.067 5.1535 5.212 5.2195 5.2365 5.2545 5.2775 5.2795 5.28 5.2975 5.4765 5.4995 

5.575 5.617 5.6595 5.6665 5.727 5.9995 6.067 6.312 6.32 6.48 6.5 6.8995 6.919 6.9195 6.9995 

7.225 7.3195 7.432 7.4995 7.4995 7.5 7.62 7.6765 7.687 7.9165 8.1795 8.1995 8.4165 8.46 8.697 

8.6995 8.9765 9.052 9.482 12.177 12.667 12.842 19.2465        
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Table 4: LGLW Estimates of Models for Prices of 2004 New Cars and Trucks Data 

 Estimates Statistics 

α Θ β γ c -2 Log 
Likelihood 

AIC AICC BIC SS KS 

GLW(α, θ, β, γ, c) 1.5404 0.0001 2.0009 0.0006 1.1998 1573.2 1583.2 1583.4 1603.5 0.9086 0.0760 

(0.1886) (0.00003) (0.00003) (0.0002) (0.008)       

GLW(α, θ, β, γ, 1) 1.3017 2.53E-07 2.00 3.61E-07 1 1619.2 1627.2 1627.3 1643.4 2.1103 0.1300 

(4.73E-17) (4.29E-10) (2.68E-24) (3.01E-10) -       

GLW(1, θ, β, γ, c) 1 2.63E-04 2.0416 0.0044 1.3407 1585.9 1593.9 1594.0 1610.1 1.0395 0.0800 

- (0.0003) (0.000018) (0.005) (0.07)       

 λ k          

Weibull(λ, k) 3.7120 1.8390    1638.4 1642.4 1642.4 1650.5 1.7155 0.0989 

(0.11) (0.11)          

 Α Β          

Gamma(α, β) 4.0703 1.2419    1555.4 1559.4 1559.5 1567.6 0.6973 0.0688 

(0.35) (0.13)          
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Figure 1: Plot of the pdf of LGLW distribution 
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Figure 2: Plot of Hazard Function 
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Figure 3: Plot of Hazard Function 
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Figure 4: Fitted Densities, Observed Probabilities, and Empirical Survival Functions Plots for Aarset Data 
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Figure 5: Fitted Densities, Observed Probabilities, and Empirical Survival Functions Plots for Failure 

Times Data 
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Figure 6: Fitted Densities, Observed Probabilities, and Empirical Survival Functions Plots for Prices of 

2004 New Cars and Trucks Data 
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